COL_FACE_Y = 'y'
COL_FACE_W = 'w'
COL_FACE_H = 'h'
- COL_FACE_IDX = 'region'
+ COL_REGION_IDX = 'region'
COL_IMAGE_IDX = 'image'
COL_IMAGE_MIME = 'mime_type'
COL_IMAGE_DATA = 'binary_stream'
+ VAL_REGION_IMAGE_ID = -1
def __init__(self, cascade_path=None, include_image=True):
self.include_image = include_image # should output transform include image?
bin_stream = open(path_image, 'rb').read()
return pd.DataFrame([['image/jpeg', bin_stream]], columns=[FaceDetectTransform.COL_IMAGE_MIME, FaceDetectTransform.COL_IMAGE_DATA])
- def generate_out_dict(self, idx=-1, x=0, y=0, w=0, h=0, image=0):
- return {FaceDetectTransform.COL_FACE_IDX: idx, FaceDetectTransform.COL_FACE_X: x,
+ @staticmethod
+ def generate_out_image(row, path_image):
+ # take image row and output to disk
+ with open(path_image, 'wb') as f:
+ f.write(row[FaceDetectTransform.COL_IMAGE_DATA][0])
+
+ @staticmethod
+ def generate_out_dict(idx=VAL_REGION_IMAGE_ID, x=0, y=0, w=0, h=0, image=0):
+ return {FaceDetectTransform.COL_REGION_IDX: idx, FaceDetectTransform.COL_FACE_X: x,
FaceDetectTransform.COL_FACE_Y: y, FaceDetectTransform.COL_FACE_W: w, FaceDetectTransform.COL_FACE_H: h,
FaceDetectTransform.COL_IMAGE_IDX: image,
FaceDetectTransform.COL_IMAGE_MIME: '', FaceDetectTransform.COL_IMAGE_DATA: ''}
def suppress_image(df):
keep_col = [FaceDetectTransform.COL_FACE_X, FaceDetectTransform.COL_FACE_Y,
FaceDetectTransform.COL_FACE_W, FaceDetectTransform.COL_FACE_H,
- FaceDetectTransform.COL_FACE_IDX, FaceDetectTransform.COL_IMAGE_IDX]
+ FaceDetectTransform.COL_REGION_IDX, FaceDetectTransform.COL_IMAGE_IDX]
blank_cols = [col for col in df.columns if col not in keep_col]
# set columns that aren't in our known column list to empty strings; search where face index==-1 (no face)
- df.loc[df[FaceDetectTransform.COL_FACE_IDX]==-1,blank_cols] = ""
+ df.loc[df[FaceDetectTransform.COL_REGION_IDX]==FaceDetectTransform.VAL_REGION_IMAGE_ID,blank_cols] = ""
return df
@property
def output_names_(self):
- return [FaceDetectTransform.COL_FACE_IDX, FaceDetectTransform.COL_FACE_X, FaceDetectTransform.COL_FACE_Y,
+ return [FaceDetectTransform.COL_REGION_IDX, FaceDetectTransform.COL_FACE_X, FaceDetectTransform.COL_FACE_Y,
FaceDetectTransform.COL_FACE_W, FaceDetectTransform.COL_FACE_H,
FaceDetectTransform.COL_IMAGE_IDX, FaceDetectTransform.COL_IMAGE_MIME, FaceDetectTransform.COL_IMAGE_DATA]
dfReturn = None
for image_idx in range(len(X)):
- # image_set = X[:, image_idx]
file_bytes = np.asarray(bytearray(X[FaceDetectTransform.COL_IMAGE_DATA][image_idx]), dtype=np.uint8)
img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
# img = cv2.imread(image_set[1])
df = pd.DataFrame() # start with empty DF for this image
if self.include_image: # create and append the image if that's requested
- dict_image = self.generate_out_dict(w=img.shape[0], h=img.shape[1], image=image_idx)
- dict_image[self.mime_col] = image_set[0]
- dict_image[self.data_col] = image_set[1]
+ dict_image = FaceDetectTransform.generate_out_dict(w=img.shape[0], h=img.shape[1], image=image_idx)
+ dict_image[FaceDetectTransform.COL_IMAGE_MIME] = X[FaceDetectTransform.COL_IMAGE_MIME][image_idx]
+ dict_image[FaceDetectTransform.COL_IMAGE_DATA] = X[FaceDetectTransform.COL_IMAGE_DATA][image_idx]
df = pd.DataFrame([dict_image])
for idxF in range(len(faces)): # walk through detected faces
face_rect = faces[idxF]
- df = df.append(pd.DataFrame([self.generate_out_dict(idxF, face_rect[0], face_rect[1],
+ df = df.append(pd.DataFrame([FaceDetectTransform.generate_out_dict(idxF, face_rect[0], face_rect[1],
face_rect[2], face_rect[3], image=image_idx)]),
ignore_index=True)
if dfReturn is None: # create an NP container for all image samples + features
dfReturn = df.reindex_axis(self.output_names_, axis=1)
else:
dfReturn = dfReturn.append(df, ignore_index=True)
- print("IMAGE {:} found {:} total rows".format(image_idx, len(df)))
+ #print("IMAGE {:} found {:} total rows".format(image_idx, len(df)))
return dfReturn
#for (x, y, w, h) in faces:
# cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
return faces
+
+ #############################################
+ ## helper for i/o
+ @staticmethod
+ def read_byte_arrays(bytearray_string):
+ """Method to recover bytes from pandas read/cast function:
+ inputDf = pd.read_csv(config['input'], converters:{FaceDetectTransform.COL_IMAGE_DATA:FaceDetectTransform.read_byte_arrays})
+ https://stackoverflow.com/a/43024993
+ """
+ from ast import literal_eval
+ if bytearray_string.startswith("b'"):
+ return bytearray(literal_eval(bytearray_string))
+ return bytearray_string