10 from flask import Flask, request, current_app, make_response
15 from cognita_client.wrap.load import load_model
16 from face_privacy_filter.transform_detect import FaceDetectTransform
19 def generate_image_df(path_image="", bin_stream=b""):
20 # munge stream and mimetype into input sample
21 if path_image and os.path.exists(path_image):
22 bin_stream = open(path_image, 'rb').read()
23 bin_stream = base64.b64encode(bin_stream)
24 if type(bin_stream)==bytes:
25 bin_stream = bin_stream.decode()
26 return pd.DataFrame([['image/jpeg', bin_stream]], columns=[FaceDetectTransform.COL_IMAGE_MIME, FaceDetectTransform.COL_IMAGE_DATA])
28 def transform(mime_type, image_binary):
30 time_start = time.clock()
31 image_read = image_binary.stream.read()
32 X = generate_image_df(bin_stream=image_read)
35 if app.model_detect is not None:
36 pred_out = app.model_detect.transform.from_native(X)
37 if app.model_proc is not None:
39 #pred_out = app.model_proc.transform.from_msg(pred_prior.as_msg())
40 pred_out = app.model_proc.transform.from_native(pred_prior.as_native())
41 time_stop = time.clock()
43 retStr = json.dumps(pred_out.as_native().to_dict(orient='records'), indent=4)
46 resp = make_response((retStr, 200, { } ))
47 # allow 'localhost' from 'file' or other;
48 # NOTE: DO NOT USE IN PRODUCTION!!!
49 resp.headers['Access-Control-Allow-Origin'] = '*'
50 print(retStr[:min(200, len(retStr))])
55 if __name__ == '__main__':
56 parser = argparse.ArgumentParser()
57 parser.add_argument('-p', "--port", type=int, default=8884, help='port to launch the simple web server')
58 parser.add_argument('-d', "--modeldir_detect", type=str, default='../model_detect', help='model directory for detection')
59 parser.add_argument('-a', "--modeldir_analyze", type=str, default='../model_pix', help='model directory for detection')
60 pargs = parser.parse_args()
62 print("Configuring local application... {:}".format(__name__))
63 logging.basicConfig(level=logging.INFO)
64 app = connexion.App(__name__)
65 app.add_api('swagger.yaml')
67 # curl -F image_binary=@test.jpg -F mime_type="image/jpeg" "http://localhost:8885/transform"
69 app.app.model_detect = None
70 if pargs.modeldir_detect:
71 if not os.path.exists(pargs.modeldir_detect):
72 print("Failed loading of detect model '{:}' even though it was specified...".format(pargs.modeldir_detect))
74 print("Loading detect model... {:}".format(pargs.modeldir_detect))
75 app.app.model_detect = load_model(pargs.modeldir_detect)
77 app.app.model_proc = None
78 if pargs.modeldir_analyze:
79 if not os.path.exists(pargs.modeldir_analyze):
80 print("Failed loading of processing model '{:}' even though it was specified...".format(
81 pargs.modeldir_analyze))
83 print("Loading processing model... {:}".format(pargs.modeldir_analyze))
84 app.app.model_proc = load_model(pargs.modeldir_analyze)
86 # run our standalone gevent server
87 app.run(port=pargs.port) #, server='gevent')