10 from flask import Flask, request, current_app, make_response
15 from cognita_client.wrap.load import load_model
16 from face_privacy_filter.transform_detect import FaceDetectTransform
18 def generate_image_df(path_image="", bin_stream=b""):
19 # munge stream and mimetype into input sample
20 if path_image and os.path.exists(path_image):
21 bin_stream = open(path_image, 'rb').read()
22 return pd.DataFrame([['image/jpeg', bin_stream]],
23 columns=[FaceDetectTransform.COL_IMAGE_MIME, FaceDetectTransform.COL_IMAGE_DATA])
25 def transform(mime_type, image_binary):
27 time_start = time.clock()
28 image_read = image_binary.stream.read()
29 X = generate_image_df(bin_stream=image_read)
32 if app.model_detect is not None:
33 dfPred = app.model_detect.transform.from_native(X).as_native()
34 if app.model_proc is not None:
36 dfPred = app.model_proc.transform.from_native(dfRegions).as_native()
37 time_stop = time.clock()
39 retStr = json.dumps(dfPred.to_dict(orient='records'), indent=4)
42 resp = make_response((retStr, 200, { } ))
43 # allow 'localhost' from 'file' or other;
44 # NOTE: DO NOT USE IN PRODUCTION!!!
45 resp.headers['Access-Control-Allow-Origin'] = '*'
47 print(retStr[:min(200, len(retStr))])
52 if __name__ == '__main__':
53 parser = argparse.ArgumentParser()
54 parser.add_argument('-p', "--port", type=int, default=8884, help='port to launch the simple web server')
55 parser.add_argument('-d', "--modeldir_detect", type=str, default='../model_detect', help='model directory for detection')
56 parser.add_argument('-a', "--modeldir_analyze", type=str, default='../model_pix', help='model directory for detection')
57 pargs = parser.parse_args()
59 print("Configuring local application... {:}".format(__name__))
60 logging.basicConfig(level=logging.INFO)
61 app = connexion.App(__name__)
62 app.add_api('swagger.yaml')
64 # curl -F image_binary=@test.jpg -F mime_type="image/jpeg" "http://localhost:8885/transform"
66 app.app.model_detect = None
67 if pargs.modeldir_detect:
68 if not os.path.exists(pargs.modeldir_detect):
69 print("Failed loading of detect model '{:}' even though it was specified...".format(pargs.modeldir_detect))
71 print("Loading detect model... {:}".format(pargs.modeldir_detect))
72 app.app.model_detect = load_model(pargs.modeldir_detect)
74 app.app.model_proc = None
75 if pargs.modeldir_analyze:
76 if not os.path.exists(pargs.modeldir_analyze):
77 print("Failed loading of processing model '{:}' even though it was specified...".format(
78 pargs.modeldir_analyze))
80 print("Loading processing model... {:}".format(pargs.modeldir_analyze))
81 app.app.model_proc = load_model(pargs.modeldir_analyze)
83 # run our standalone gevent server
84 app.run(port=pargs.port) #, server='gevent')